Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Lancet Respir Med ; 11(5): 453-464, 2023 05.
Article in English | MEDLINE | ID: covidwho-2249489

ABSTRACT

BACKGROUND: Interpretation of the evidence from randomised controlled trials (RCTs) of remdesivir in patients treated in hospital for COVID-19 is conflicting. We aimed to assess the benefits and harms of remdesivir compared with placebo or usual care in these patients, and whether treatment effects differed between prespecified patient subgroups. METHODS: For this systematic review and meta-analysis, we searched PubMed, Embase, the Cochrane COVID-19 trial registry, ClinicalTrials.gov, the International Clinical Trials Registry Platform, and preprint servers from Jan 1, 2020, until April 11, 2022, for RCTs of remdesivir in adult patients hospitalised with COVID-19, and contacted the authors of eligible trials to request individual patient data. The primary outcome was all-cause mortality at day 28 after randomisation. We used multivariable hierarchical regression-adjusting for respiratory support, age, and enrollment period-to investigate effect modifiers. This study was registered with PROSPERO, CRD42021257134. FINDINGS: Our search identified 857 records, yielding nine RCTs eligible for inclusion. Of these nine eligible RCTs, individual data were provided for eight, covering 10 480 patients hospitalised with COVID-19 (99% of such patients included in such RCTs worldwide) recruited between Feb 6, 2020, and April 1, 2021. Within 28 days of randomisation, 662 (12·5%) of 5317 patients assigned to remdesivir and 706 (14·1%) of 5005 patients assigned to no remdesivir died (adjusted odds ratio [aOR] 0·88, 95% CI 0·78-1·00, p=0·045). We found evidence for a credible subgroup effect according to respiratory support at baseline (pinteraction=0·019). Of patients who were ventilated-including those who received high-flow oxygen-253 (30·0%) of 844 patients assigned to remdesivir died compared with 241 (28·5%) of 846 patients assigned to no remdesivir (aOR 1·10 [0·88-1·38]; low-certainty evidence). Of patients who received no oxygen or low-flow oxygen, 409 (9·1%) of 4473 patients assigned to remdesivir died compared with 465 (11·2%) of 4159 patients assigned to no remdesivir (0·80 [0·70-0·93]; high-certainty evidence). No credible subgroup effect was found for time to start of remdesivir after symptom onset, age, presence of comorbidities, enrolment period, or corticosteroid use. Remdesivir did not increase the frequency of severe or serious adverse events. INTERPRETATION: This individual patient data meta-analysis showed that remdesivir reduced mortality in patients hospitalised with COVID-19 who required no or conventional oxygen support, but was underpowered to evaluate patients who were ventilated when receiving remdesivir. The effect size of remdesivir in patients with more respiratory support or acquired immunity and the cost-effectiveness of remdesivir remain to be further elucidated. FUNDING: EU-RESPONSE.


Subject(s)
COVID-19 , Adult , Humans , COVID-19 Drug Treatment
2.
Crit Care ; 27(1): 9, 2023 01 10.
Article in English | MEDLINE | ID: covidwho-2196397

ABSTRACT

BACKGROUND: Baricitinib has shown efficacy in hospitalized patients with COVID-19, but no placebo-controlled trials have focused specifically on severe/critical COVID, including vaccinated participants. METHODS: Bari-SolidAct is a phase-3, multicentre, randomised, double-blind, placebo-controlled trial, enrolling participants from June 3, 2021 to March 7, 2022, stopped prematurely for external evidence. Patients with severe/critical COVID-19 were randomised to Baricitinib 4 mg once daily or placebo, added to standard of care. The primary endpoint was all-cause mortality within 60 days. Participants were remotely followed to day 90 for safety and patient related outcome measures. RESULTS: Two hundred ninety-nine patients were screened, 284 randomised, and 275 received study drug or placebo and were included in the modified intent-to-treat analyses (139 receiving baricitinib and 136 placebo). Median age was 60 (IQR 49-69) years, 77% were male and 35% had received at least one dose of SARS-CoV2 vaccine. There were 21 deaths at day 60 in each group, 15.1% in the baricitinib group and 15.4% in the placebo group (adjusted absolute difference and 95% CI - 0.1% [- 8·3 to 8·0]). In sensitivity analysis censoring observations after drug discontinuation or rescue therapy (tocilizumab/increased steroid dose), proportions of death were 5.8% versus 8.8% (- 3.2% [- 9.0 to 2.7]), respectively. There were 148 serious adverse events in 46 participants (33.1%) receiving baricitinib and 155 in 51 participants (37.5%) receiving placebo. In subgroup analyses, there was a potential interaction between vaccination status and treatment allocation on 60-day mortality. In a subsequent post hoc analysis there was a significant interaction between vaccination status and treatment allocation on the occurrence of serious adverse events, with more respiratory complications and severe infections in vaccinated participants treated with baricitinib. Vaccinated participants were on average 11 years older, with more comorbidities. CONCLUSION: This clinical trial was prematurely stopped for external evidence and therefore underpowered to conclude on a potential survival benefit of baricitinib in severe/critical COVID-19. We observed a possible safety signal in vaccinated participants, who were older with more comorbidities. Although based on a post-hoc analysis, these findings warrant further investigation in other trials and real-world studies. Trial registration Bari-SolidAct is registered at NCT04891133 (registered May 18, 2021) and EUClinicalTrials.eu ( 2022-500385-99-00 ).


Subject(s)
COVID-19 , Humans , Adult , Male , Middle Aged , Female , SARS-CoV-2 , RNA, Viral , COVID-19 Drug Treatment , Double-Blind Method
3.
Emerg Microbes Infect ; 11(1): 2423-2432, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2028961

ABSTRACT

Omicron variant is circulating in the presence of a globally acquired immunity unlike the ancestral SARS-CoV-2 isolate. Herein, we investigated the normalized viral load dynamics and viral culture status in 44 fully vaccinated healthcare workers (HCWs) infected with the Omicron BA.1 variant. Viral load dynamics of 38 unvaccinated HCWs infected with the 20A variant during the first pandemic wave was also studied. We then explored the impact of Omicron infection on pre-existing immunity assessing anti-RBD IgG levels, neutralizing antibody titres against 19A, Delta and Omicron isolates, as well as IFN-γ release following cell stimulation with SARS-CoV-2 peptides. We reported that two weeks after diagnosis a greater proportion of HCWs infected with 20A (78.9%, 15/19) than with Omicron BA.1 (44.7%, 17/38; p = 0.02) were still positive by RT-qPCR. We found that Omicron breakthrough infections led to an overall enhancement of vaccine-induced humoral and cellular immunity as soon as a median [interquartile range] of 8 [7-9] days post symptom onset. Among samples with similar high viral loads, non-culturable samples exhibited higher neutralizing antibody titres and anti-RBD IgG levels than culturable samples. Additionally, Omicron infection led to an enhancement of antibodies neutralization capacity against other SARS-CoV-2 isolates. Taken together, the results suggest that Omicron BA.1 vaccine breakthrough infection is associated with a faster viral clearance than that of the ancestral SARS-CoV-2, in addition this new variant leads to a rapid enhancement of the humoral response against multiple SARS-CoV-2 variants, and of the cellular response.


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2/genetics , Virus Shedding , Antibodies, Viral , Immunoglobulin G , Antibodies, Neutralizing
5.
J Clin Virol ; 152: 105169, 2022 07.
Article in English | MEDLINE | ID: covidwho-1804471

ABSTRACT

The virus neutralization test (VNT) is the reference for the assessment of the functional ability of neutralizing antibodies (NAb) to block SARS-CoV-2 entry into cells. New competitive immunoassays measuring antibodies preventing interaction between the spike protein and its cellular receptor are proposed as surrogate VNT (sVNT). We tested three commercial sVNT (a qualitative immunochromatographic test and two quantitative immunoassays named YHLO and TECO) together with a conventional anti-spike IgG assay (bioMérieux) in comparison with an in-house plaque reduction neutralization test (PRNT50) using the original 19A strain and different variants of concern (VOC), on a panel of 306 sera from naturally-infected or vaccinated patients. The qualitative test was rapidly discarded because of poor sensitivity and specificity. Areas under the curve of YHLO and TECO assays were, respectively, 85.83 and 84.07 (p-value >0.05) using a positivity threshold of 20 for PRNT50, and 95.63 and 90.35 (p-value =0.02) using a threshold of 80. However, the performances of YHLO and bioMérieux were very close for both thresholds, demonstrating the absence of added value of sVNT compared to a conventional assay for the evaluation of the presence of NAb in seropositive subjects. In addition, the PRNT50 assay showed a reduction of NAb titers towards different VOC in comparison to the 19A strain that could not be appreciated by the commercial tests. Despite the good correlation between the anti-spike antibody titer and the titer of NAb by PRNT50, our results highlight the difficulty to distinguish true NAb among the anti-RBD antibodies with commercial user-friendly immunoassays.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/diagnosis , Humans , Neutralization Tests/methods
6.
J Clin Microbiol ; 60(1): e0174621, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-1637201

ABSTRACT

With the availability of vaccines, commercial assays detecting anti-severe acute respiratory syndrome coronavirus-2 antibodies (Ab) evolved toward quantitative assays directed to the spike glycoprotein or its receptor binding domain (RBD). The main objective of the present study was to compare the Ab titers obtained with quantitative commercial binding Ab assays, after one dose (convalescent individuals) or two doses (naive individuals) of vaccine, in health care workers (HCW). Antibody titers were measured in 255 sera (from 150 HCW) with five quantitative immunoassays (Abbott RBD IgG II quant, bioMérieux RBD IgG, DiaSorin Trimeric spike IgG, Siemens Healthineers RBD IgG, Wantai RBD IgG). One qualitative total antibody anti-RBD detection assay (Wantai) was used to detect previous infection before vaccination. The results are presented in binding Ab units (BAU)/mL after application, when possible, of a conversion factor provided by the manufacturers and established from a World Health Organization internal standard. There was a 100% seroconversion with all assays evaluated after two doses of vaccine. With assays allowing BAU/mL correction, Ab titers were correlated (Pearson correlation coefficient, ρ, range: 0.85-0.94). The titer differences varied by a mean of 10.6% between Siemens and bioMérieux assays to 60.9% between Abbott and DiaSorin assays. These results underline the importance of BAU conversion for the comparison of Ab titer obtained with the different quantitative assays. However, significant differences persist, notably, between kits detecting Ab against the different antigens. A true standardization of the assays would be to include the International Standard in the calibration of each assay to express the results in IU/mL.


Subject(s)
COVID-19 , Antibodies, Viral , Health Personnel , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination
9.
Emerg Microbes Infect ; 10(1): 1499-1502, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1337230

ABSTRACT

SARS-CoV-2 mutations appeared recently and can lead to conformational changes in the spike protein and probably induce modifications in antigenicity. We assessed the neutralizing capacity of antibodies to prevent cell infection, using a live virus neutralization test with different strains [19A (initial one), 20B (B.1.1.241 lineage), 20I/501Y.V1 (B.1.1.7 lineage), and 20H/501Y.V2 (B.1.351 lineage)] in serum samples collected from different populations: two-dose vaccinated COVID-19-naive healthcare workers (HCWs; Pfizer-BioNTech BNT161b2), 6-months post mild COVID-19 HCWs, and critical COVID-19 patients. No significant difference was observed between the 20B and 19A isolates for HCWs with mild COVID-19 and critical patients. However, a significant decrease in neutralization ability was found for 20I/501Y.V1 in comparison with 19A isolate for critical patients and HCWs 6-months post infection. Concerning 20H/501Y.V2, all populations had a significant reduction in neutralizing antibody titers in comparison with the 19A isolate. Interestingly, a significant difference in neutralization capacity was observed for vaccinated HCWs between the two variants but not in the convalescent groups.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , Humans , Neutralization Tests , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
10.
Sci Rep ; 11(1): 14977, 2021 07 22.
Article in English | MEDLINE | ID: covidwho-1322500

ABSTRACT

A comprehensive clinical and microbiological assessments of COVID-19 in front-line healthcare workers (HCWs) is needed. Between April 10th and May 28th, 2020, 319 HCWs with acute illness were reviewed. In addition to SARS-CoV-2 RT-PCR screening, a multiplex molecular panel was used for testing other respiratory pathogens. For SARS-CoV-2 positive HCWs, the normalized viral load, viral culture, and virus neutralization assays were performed weekly. For SARS-CoV-2 negative HCWs, SARS-CoV-2 serological testing was performed one month after inclusion. Among the 319 HCWs included, 67 (21.0%) were tested positive for SARS-CoV-2; 65/67 (97.0%) developed mild form of COVID-19. Other respiratory pathogens were found in 6/66 (9.1%) SARS-CoV-2 positive and 47/241 (19.5%) SARS-Cov-2 negative HCWs (p = 0.07). The proportion of HCWs with a viral load > 5.0 log10 cp/mL (Ct value < 25) was less than 15% at 8 days after symptom onset; 12% of HCWs were positive after 40 days (Ct > 37). More than 90% of cultivable virus had a viral load > 4.5 log10 cp/mL (Ct < 26) and were collected within 10 days after symptom onset. Among negative HCWs, 6/190 (3.2%) seroconverted. Our data suggest that the determination of viral load can be used for appreciating the infectiousness of infected HCWs. These data could be helpful for facilitating their return to work.


Subject(s)
COVID-19/diagnosis , Health Personnel , SARS-CoV-2/isolation & purification , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , Female , Humans , Male , Middle Aged , Prospective Studies , Viral Load , Young Adult
11.
BMJ Open ; 10(11): e041268, 2020 11 24.
Article in English | MEDLINE | ID: covidwho-944947

ABSTRACT

INTRODUCTION: The COVID-19 pandemic caused by SARS-CoV-2 threatens global public health, and there is an urgent public health need to assess acquired immunity to SARS-CoV-2. Serological tests might provide results that can be complementary to or confirm suspected COVID-19 cases and reveal previous infection. The performance of serological assays (sensitivity and specificity) has to be evaluated before their use in the general population. The neutralisation capacity of the produced antibodies also has to be evaluated. METHODS AND ANALYSIS: We set up a prospective, multicentric clinical study to evaluate the performance of serological kits among a population of healthcare workers presenting mild symptoms suggestive of SARS-CoV-2 infection. Four hundred symptomatic healthcare workers will be included in the COVID-SER study. The values obtained from a control cohort included during the prepandemic time will be used as reference. A workflow was set up to study serological response to SARS-CoV-2 infection and to evaluate antibody neutralisation capacity in patients with a confirmed SARS-CoV-2 infection. The sensitivity and specificity of the tests will be assessed using molecular detection of the virus as a reference. The measurement of IgM and IgG antibodies will be performed once per week for 6 consecutive weeks and then at 6, 12, 18, 24 and 36 months after the diagnosis. The kinetics of IgM and IgG will determine the optimal period to perform serological testing. The proportion of false negative PCR tests in symptomatic subjects will be determined on the basis of subsequent seroconversions. ETHICS AND DISSEMINATION: Ethical approval has been obtained from the national review board for biomedical research in April 2020 (Comité de Protection des Personnes Sud Méditerranée I, Marseille, France) (ID RCB 2020-A00932-37). Results will be disseminated through presentations at scientific meetings and publications in peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT04341142.


Subject(s)
Antibodies, Viral/analysis , COVID-19/diagnosis , Mass Screening/methods , Pandemics , SARS-CoV-2/immunology , COVID-19/epidemiology , Female , Humans , Male , Prospective Studies , Serologic Tests
12.
J Clin Virol ; 132: 104613, 2020 11.
Article in English | MEDLINE | ID: covidwho-746006

ABSTRACT

BACKGROUND: Many commercial assays, of different designs, detecting SARS-CoV-2-specific antibodies exist but with little experience with them. OBJECTIVES: The aim of this study was to compare the performance of assays detecting IgG or total antibodies to N or S antigens, validated for routine use in France, with samples from subjects with more or less severe SARS-CoV-2 infection. METHODS: Eight assays were used: Abbott Architect, DiaSorin Liaison®, bioMérieux Vidas®, Roche Elecsys Cobas®, Siemens Atellica®, BioRad Platelia ELISA, Epitope Diagnostics ELISA, and Wantai ELISA. The tested population included 86 samples from 40 hospitalized subjects and 28 outpatients at different time from symptom onset. RESULTS: The positivity rate varied depending on the assay but was greater for all assays in hospitalized than non-hospitalized patients. Despite a good correlation between the assays, discrepancies occurred, without a systematic origin, even for samples taken more than 20 days after symptom onset. These discrepancies were linked to low antibody levels in pauci-symptomatic patients. CONCLUSION: Whichever assay is chosen, a false negative result may need to be ruled out with another test in a risk situation.


Subject(s)
Antibodies, Viral/blood , COVID-19 Testing/methods , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Automation, Laboratory , Child , Female , High-Throughput Screening Assays , Humans , Immunoglobulin G/blood , Limit of Detection , Male , Middle Aged , Reproducibility of Results , Serologic Tests , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL